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Introduction and Background - The use of Sun noise for the evaluation of microwave stations 
having elevation control on the antenna is very common.  The technique consists of making two noise 
measurements, with the antenna pointed at the Sun and at the "quiet" sky.  This has been discussed at 
length [1-6]1 in articles going back to at least 1960 [7].  The biggest change that has occurred in the last 
few years is the added availability of accurate and current Sun noise data over the Internet.  This permits 
accurate evaluation of the receiving parameter, g/t.  However, these ideas change slowly and  "Sun Noise" 
measurements are still widely used without correction for the current solar flux.

Going one step further, we can make use of an additional measurement, the noise of a known temperature 
that fully encompasses the antenna beam.  The usual such noise source is the Earth.  This allows the 
determination of receiver noise temperature, tR. and system noise temperature, t [5].  If the measurements 
are reasonably accurate, it is easy to then calculate the antenna gain, g, from the estimates of g/t and t.

In the following pages, this procedure is outlined, along with sources of data and methods for maximizing 
the accuracy of the measurements.  Graphs are presented to simplify the calculations.  Following this is an 
error analysis, allowing us to determine the sensitivities of the various estimated parameters to the 
measurements.  Our estimates will never be a totally accurate, but we can have knowledge of the general 
magnitude of the errors.  With care, the procedure of the three measurements will be shown to produce 
estimates of g/t, t and g to useful accuracy.

Each of the measurements and needed assumptions is discussed in the following sections.  Those wanting 
to get a fast start with the measurements can go directly to the "Example" section, that will allow answers 
to be generated and even some "feel" for the method.  However, it is highly recommended that you return 
to the detailed sections and do enough study to be sure all the assumptions are appropriate for your 
station.

Math Symbols - Some algebra is part of the subject of noise measurements.  One element that can 
cause confusion is the use of dB to represent ratios. It is extremely important to know when the dB is 
being used, and when not!  To minimize confusion, a ratio will be represented by a lower-case main letter 
and the same quantity in dB will use a capital main letter.  There may be subscripts, but they will not 
switch between lower case and capitals.  For example, ySQ is the ratio of the noise power measured for the 
Sun and the quiet sky and YSQ is the same quantity expressed in dB.

The symbol K is the abbreviation for the absolute temperature unit Kelvins.  It should not be confused 
with the lower-case version, k, which is Boltzmann's constant, defined later.

Solar Flux Determination - Fundamental to using the Sun as a signal generator is determining its 
output setting!  Fortunately, this has become simpler with the availability of up-to-date measurements 
over the Internet.

1 Notes and references are at the end of the text.  These are indicated by numbers inside square brackets.



To maximize the accuracy of the solar flux data, try to make the Sun-noise measurements near the time-
of-day when the calibrated observatory data is available.  Presently, the solar flux data is available from 
the Space Environmental Center (SEC) at http://www.sec.noaa.gov/ftpmenu/lists/radio.html.  For 
instance, for those in North America, there is a daily set of data taken at Sagamore Hill, Massachusetts, at 
1600 UTC.  In addition, a 2800 MHz measurement is made at Penticton, British Columbia, at 1700 UTC.  
If your Sun measurements are made around this time of day, the Sun can be high in the sky as well as 
having current flux data available.  The Penticton data can be correlated with the Sagamore Hill data to 
add to the confidence that the solar flux levels were steady during the period.  As an example, on June 27, 
2003 the following data was posted for Sagamore Hill and Penticton  (there were also more sets of data 
from various observatories around the world).
 245 MHz  16 SFU
 410      35
 610      43
 1415     79
 2695    117
 2800    123  (Penticton data)
 4995    170
 8800    261
 15400   549 

Radio bursts can occur that will create short-term changes in the solar flux data.  This is particularly true 
below a few thousand MHz and can cause wild variations at frequencies such as 144 MHz.  Again, 
Internet data is available to minimize errors due to these bursts.  The SEC issues burst reports every half 
hour.  As of this writing, these are available at http://www.sec.noaa.gov/ftpdir/lists/radio/radio_bursts.txt. 
The safest procedure is to check this data an hour or so after your Sun-noise measurements and discard 
data if a burst event has occurred.  This also emphasizes the utility of making multiple measurements, 
spread over an hour or two, as many burst events are of relatively short duration.

The solar flux data that is available will not be in any Amateur band.  However, the data is taken at nine 
different frequencies, spread from 245 to 15,400 MHz.  A satisfactory way to determine data for in-
between frequencies is to plot the current SEC solar flux data against frequency, as shown in an example 
in Figure 1.  Not only the level, but the shape of this curve varies with the day.  It is best to plot all nine 
points to look for any inconsistencies in the data.  Also, the use of a "log-log" plot, as shown, prevents the 
data points from being squeezed on the plot, and emphasizes the shape and slope of the curve.  This plot 
came from a spread-sheet program, but hand plotting is totally satisfactory.  Graph paper with the log-log 
grid is available from some stationary stores, particularly technical suppliers or university book stores.

At this point, we can read from our graph a single number that is the solar flux density corresponding to 
the time of the measurements and the frequency of interest.  Solar flux density is the power received in a 
given area of the receiving antenna in a 1 Hz bandwidth.  As a computational convenience, we will 
convert the solar flux density, the frequency of operation, and several constants into a number, i, the 
"intensity" measured in Kelvins.  As a formula (derived in Appendix I)
                      i = (s/2)⋅λ2/(4⋅π⋅k)
where  s = Solar flux density in Watts per square meter per Hz
            λ = Wavelength in meters
            k = Boltzmann's constant, 1.38⋅10-23 Watt-seconds per Kelvin

As distributed over sources such as the Internet, solar flux density has been scaled up by1022, for which 
case the units are called "solar flux units," (SFU).  Here we add a subscript s when the units are SFU and 
the equation for i becomes
                       i = 0.2882⋅ss⋅λ2                                                  (1)

http://www.sec.noaa.gov/ftpdir/lists/radio/radio_bursts.txt
http://www.sec.noaa.gov/ftpmenu/lists/radio.html


This equation is plotted in Figure 2 for Amateur frequencies and the normal range of solar flux densities.  
The equation lends itself to greater precision than the plots, but either method will give the value of i that 
will be needed for calculating g/t.

A comment is appropriate on the factor s/2 in the upper equation.  This derives from the polarization of 
the Sun's radiation being random, and only half of this flux level being sensed by any single polarization, 
either linear or circular.  The definition of s is the heating value of the flux density while i, the intensity, is 
in terms of the power available at an ideal antenna's terminals.  There is no single polarization able to 
extract the more than half of the energy.

There are other useful noise sources besides the Sun, particularly radio stars and the Moon [5, 8-12].  
These can be of great value for measuring the performance of stations with larger antennas, but are too 
weak to be easily used with small antennas.  For that reason, these sources are not covered here.  The 
principles are identical to that shown for the Sun, except that there are no concerns for the angular extent 
of those sources.

The Quiet Sky - This is our second "known" signal generator.  At microwave frequencies, large 
regions of the sky are devoid of major noise sources.  If there were no noise sources where our antenna is 
pointed, we would be left with only antenna and feed-line losses along with front-end noise, all referred to 
here as "receiver noise."  There are other sources, however:
• The background radiation of the universe.  This is only about 3K.
• Radiation from the material in our galaxy, the Milky Way.
• Earth noise picked up by parabolic antenna spillover.
• Earth noise picked up by scattering from antenna feed structures.
• Atmospheric absorption noise.
We should examine these noise sources one at a time to determine if they are a factor in determining our 
quiet sky noise.

The first source is small in magnitude and unavoidable.  So, let's look at radiation from our galaxy.  First, 
one should avoid ever attempting to use an antenna pointed at the galactic plane for a quiet sky.  The 
galactic nucleus is at almost 30 degrees southerly declination, but visible to most stations in the northern 
hemisphere.  The galactic plane is tilted with respect to the Earth's equator and has a declination up to 
about 65 degrees North.  This means that stations can avoid pointing at the galactic plane by keeping the 
antenna within 20 degrees of the North Star.  This point in the sky, obviously limited in view to the 
Northern Hemisphere, can be found by pointing directly North in azimuth, at an elevation angle equal to 
the station latitude.  Alternatively, the large region around the constellation Cetus-the-whale (declination  
= 10 degrees S, Right Ascension = 03 hours) is far from the galactic plane and visible from most of the 
populated Earth.  Finding this in az-el coordinates takes some calculations that will not be covered here 
[14].  Figure 3 shows that at these quiet positions in the sky, the galactic noise is a major factor only 
below 432 MHz, being about 25 K at 432 MHz and insignificant from 903 MHz and higher.  This 
quantity becomes one component of our total quiet sky noise.

Parabolic antenna spillover occurs when the feed has significant gain past the edges of  reflector.  To 
some degree, this spillover is a necessity, as the feed pattern must roll off slowly.  Various rules-of-thumb 
have been offered for maximizing receive performance by trading off antenna gain for reduced spillover, 
such as that by Barry Malowanchuk, VE4MA [15].  He determined that the illumination at the dish edges 
should be down 13 to 14 dB from the center for 1989 receiver performance with lower levels needed for 
better receivers.  Paul Wade, W1GHZ, has analyzed numerous dish feeds for their spillover efficiency 
[16].  These offer a way of estimating the noise contribution of spillover.  For instance, the 0.96 λ "Coffee 
Can" feed in Figure 10 of the referenced article, has about 11% efficiency loss due to spillover for a f/d = 
0.45 dish.  If one assumes that half of this corresponds to side lobes that point toward 290K ground, the 
noise temperature at the antenna terminals due to this source would be 0.11x0.5x290K or 16K.  



Examination of the various figures in the Wade paper shows considerable variation in spillover loss.  In 
addition, the steepness of the spillover curves suggests the importance of under-illuminating the dish for 
reception purposes, i.e., choose an f/d that is on the low side of the maximum gain point.  Other antenna 
types also have unwanted lobes, and can be analyzed for noise in a similar fashion [8].

Antenna feed structures consist of a combination of  the electro-magnetics and  the mechanical supports 
for this feed.  Center-fed dishes place all of this in the middle where the potential for upsetting the overall 
radiation pattern is the greatest.  This is one argument for the use of an offset feed.  A center-fed dish can 
be tuned to match out some of the intercepted energy that has been reflected back at the feed.  But, if the 
outside of the feed is conductive, this will support current flows that will produce pattern lobes, some 
portion of which will point towards the Earth, even though the antenna is pointed to the "quiet sky."  A 
conductive support structure can produce the same effect.  It is possible to reduce these effects for the 
supports by the use of absorptive materials, such as wood , that tend to match the impedance of free 
space.  An estimate of the resulting noise energy from the feed structure parallels that of the spillover 
effects.  Again, as an example, if the blockage of the dish was 5% and we assume that half of the re-
radiated pattern illuminates the 290K Earth, the resulting noise contribution would be 0.05x0.5x290K or 
7K.

Finally, noise from atmospheric absorption losses are principally the result of oxygen and water in the air. 
The attenuation, in dB, varies directly with the path length through the atmosphere.  This, in turn, varies 
with the cosecant of the elevation angle producing twice the attenuation at a 30 degree elevation angle as 
that when the antenna is straight up.  The following table summarizes the noise temperature (and loss) for 
several important situations with the antenna pointed straight overhead [17, 18]:
    Table 1 - Zenith Atmospheric Noise Temperature and (Attenuation)
    5.76 GHz and below              2K (0.03 dB)
    10.4 GHz, 0% Rel. Humidity      3K (0.04 dB)
    10.4 GHz, 100% Rel. Humidity    5K (0.08 dB)
    24.1 GHz, 0% Rel. Humidity      4K (0.06 dB)
    24.1 GHz, 100% Rel. Humidity   79K (1.1 dB)
Attenuation figures are for a one-way path.  An atmospheric physical temperature of 275K is assumed.  
At frequencies of 5.76 GHz and below, the losses and noise contribution are primarily from oxygen and 
small.  At 24 Ghz, the operating frequency is close enough to the 22 GHz water-vapor absorption peak to 
make the values very dependent on the relative humidity.  At this frequency, there will generally be a 
significant and difficult to quantify noise contribution from the atmosphere.

Heavy clouds, fog and rain have water droplets that can increase the losses and associated noise.  For 
system performance evaluation, these situations should be avoided if possible.  No attempt will be made 
here to quantify these noise sources, but the references 17 and 18 have curves related to these conditions.

At this point, we should have an estimate of the noise temperature seen by the antenna, called tQ, (not 
including receiver noise) when pointing at the quiet sky.  The separation between the quiet sky and the 
"receiver" as used here, places any antenna and feed-line resistive losses as part of the receiver.

Earth Noise - If one can envelope the antenna in a material that is lossy, and at a known temperature, 
a reference is obtained against which to compare the quiet sky and Sun noise measurements.  Since this 
noise source is large in angular extent, it has a temperature independent of the antenna gain.  An 
approximation to this situation is the Earth, and the material such as forests.

Any lossy material will produce noise at a level determined by the physical temperature and the loss.  One 
concern is that there are reflections from the Earth, so the antenna is also seeing material with a physical 
temperature other than the Earth's.  For instance, if the antenna beam is directed downward towards the 
ground, the cold sky, or the Sun might reflect back to the antenna.  In addition to the noise effects, the 
reflected wave is able to modify the impedance seen at the antenna terminals.  This may alter the gain of 



the first receiver amplifier, introducing errors into the noise measurements.  Ideally, the ground would 
have an impedance the same as that of free space, producing no reflections and no error sources.

An experiment was conducted to see some of these impedance affects.  A 22-element Yagi at 2304 MHz 
was matched quite carefully when looking straight upward.  Then the antenna was pointed towards an 
extensive oak woods and directly downward.  Table 2 summarizes the results:
  Table 2 - Return-Loss Measurements for 22-element Yagi
      Pointed towards sky only       -42 dB
      Pointed towards oak woods      -35 dB
      Pointed directly downward      -30 dB
Although these mismatches when looking at the Earth are not large, interpretation of these numbers is not 
simple.  One might consider that if a perfect mirror was placed at the ground level, the reflection seen in 
the mirror when looking downward would be sky plus the antenna itself.  Thus the lack of major 
reflections may not indicate that one is only seeing the lossy Earth; it may be seeing the space in the other 
direction.  Similarly, when noise measurements are being made to small fractions of a dB, changes in 
input impedance represented by a 30 dB return loss are significant; they are a circle on a Smith chart 
passing through about 47 and 53 Ohms.

Attenuation measurements made by placing oak boards between two test antennas at 2304 MHz suggest 
loss of over 1 dB/inch.  It is reasonable to expect these losses will increase with moisture content, or with 
frequency.  Thus, the vegetative noise sources at microwave frequencies have much promise.  
Considerable literature exists on the attenuation effects of trees, as applied to communications between 
satellites and vehicles [19].  The use of the Earth as a temperature reference has seen much less study and 
would seem to be a fruitful and useful area for amateur researchers.  The satellite studies, such as 
reference [19] show considerable attenuation for forested areas, but these studies do not usually address 
the reflections from the forest.  The use of mineral matter for a temperature reference seems to have had 
no study.

If the antenna-terminal impedance changes with antenna direction, the receiver first stage preamplifier 
gain will change as well.  This gain change will appear the same as a change in noise level.  The amount 
of gain change depends on both the particular impedance and the stability of the amplifier.  Measuring 
this gain change requires care and the proper test equipment.  As an alternative, ferrite isolators can be 
placed ahead of the receiver.  These  devices reduce the changes in impedance seen by the amplifier. Two 
isolators can be placed in cascade to further reduce these effects.  Some noise will be introduced by the 
loss in the isolator.  This can be evaluated by measuring the insertion loss of the isolator, Li (in dB), and 
knowing the physical temperature, ti (in Kelvins).  The noise temperature added to the receiver 
temperature will be ti⋅(100.1⋅Li-1).  This can be subtracted after the system noise temperature is measured, 
assuming that the isolator(s) is not left as part of the receiver.

As an alternative to Earth measurements, a resistive load is quite attractive.  The physical temperature is 
easy to determine and the impedance match can be very good.  The negative side to the use of such a load 
is the need to modify the system being measured by inserting the load.  Again the use of ferrite isolators 
can be of benefit here.

One way, or another, at this point we should have an estimate of the noise temperature seen by the 
antenna, called tE, (not including receiver noise) when pointing at the Earth.  If measurements are not 
available, assuming a value for tE in the 220 to 250K range appears to be reasonable.

Measuring Power Ratios - The estimation of performance requires measuring the ratio between 
two noise powers.  A number of approaches are available to keep the measurement radio operating in its 
linear region, to do power averaging and to accurately produce a power value [3, 4, 12, 20].  Part of what 
must be dealt with is a trend toward commercial radios that cannot have their AGC disabled.  If using 
such a radio, be sure that backing off the RF gain is an adequate means for disabling the AGC.  In 



addition, the meter used to measure the power levels must have accuracy over a wide dynamic range.  A 
good quality RMS AC digital voltmeter can provide excellent accuracy.

Another approach is to use the very high linearity of delta/sigma analog-to-digital converters.  These are 
normally the type used with the audio ports of computers.  To make full use of these requires software, of 
course.  A single package that can be specifically configured for noise-measurement purpose is the    
DSP-10 radio [21].  That  2-meter transceiver has an I-F crystal filter with a bandwidth of about 12 kHz.  
The entire bandwidth is sampled at a 48 kHz rate with true power calculations (I2+Q2) for each sample.  
These powers are averaged to any amount desired and displayed to 0.001 dB resolution.  An accuracy 
adequate to support the resolution is maintained by the A/D converter, even for large y-values.  The 12 
kHz bandwidth is not as wide as one might want for fast measurements, but it does make it easy to find 
measurement frequencies that do not have interfering stations.  To obtain a noise sample with a standard 
deviation of 0.01 dB takes about 16 seconds.  This is usually adequate accuracy for amateur purposes.  In 
addition to making the noise measurements, the DSP-10 can display the azimuth and elevation 
coordinates of the Sun.

Performance Measure, g/t - The best receiving performance is obtained by maximizing the ratio 
of the antenna gain divided by the system noise temperature, usually called g/t.  This says that increasing 
the gain is only beneficial if it happens faster than the noise increase from the resulting side/back lobes.  
Usually the g/t ratio is expressed in dB as 10⋅log10(g/t), which often carries the nick-name for units of 
dB/K.  Again, to avoid dB confusion, we will not refer to a quantity "G/T" since after conversion to dB, 
the g/t ratio is taken by subtraction of dB quantities, rather than by division.  That is,
     10⋅log10(g/t) = 10⋅log10(g) - 10⋅log10(t) = G - T and not G/T.

If the solar flux levels are known, the value of g/t can be determined from the measurement of two noise 
powers, the quiet sky and the Sun.  The ratio of the two noise powers  is often used as a substitute 
measure for g/t, but as is often pointed out, this is ambiguous unless the solar flux is also specified.  Much 
better is to estimate g/t.

If we have followed through the above process of finding the solar intensity, i, only two noise power 
measurements are needed to determine g/t.  The noise measurements with the antenna pointed at the quiet 
sky, and with the antenna pointed directly at the Sun tell the whole story.  The formula is (see Appendix 
I)
    g/t = (ySQ-1) / i                                                                                             (2)
where
    ySQ = nS/nQ

    nQ = noise power received with the antenna pointed at the quiet sky
    nS = noise power received with the antenna pointed at the Sun
The noise measurements are not calibrated in any absolute sense.  Since they both have the same 
(implied) reference, the reference cancels out when the ratio ySQ is taken.  This normally occurs by 
measuring the quiet sky on a power meter and moving the antenna to the Sun.  By observing the number 
of dB of power increase we have measured YSQ, in dB.  This is converted to ySQ, the ratio, when we apply
    ySQ = 10(0.1⋅Y

SQ
)

which is the reverse formula from that used to convert to dB.  Alternatively, one can get g/t to reasonable 
accuracy by applying the graphs of figure 4.

Receiver and System Noise Temperatures - The quantity g/t is fine as a measure of 
receiving performance.  It lacks, however, in showing how the performance divides between the antenna 
gain and the system noise temperature, t.  This becomes important if we are wondering where to apply 
our efforts to improve receiving performance.  Additionally, it does not show transmitting performance, 
since that is independent of system noise temperature.



As discussed above, when the antenna is pointed at a lossy medium that fully encompasses the antenna 
beam, we can deduce the resulting noise power seen at the antenna "terminals."  This measurement, 
combined with the quiet sky noise power measurement provides an estimate of the receiver noise 
temperature.  We again take the ratio of these two measurements, yEQ, where
    yEQ = nE/nQ

    nE = noise power received with the antenna pointed at the Earth
    nQ = the quiet sky measurement again.

  When the antenna is pointed at the quiet sky, the noise power is the sum of that due to the receiver and 
that due to the quiet sky (and undesired lobes, as discussed previously).  When the antenna is pointed at 
the Earth, the noise power is the sum of that due to the receiver and that due to the Earth, as discussed 
above.  Expressed as an equation:
    yEQ = (tE + tR)/(tQ + tR)                                                                             (3)
where
    tR = the receiver noise temperature to be determined
    tE = the assumed temperature for the Earth.
    tQ= the assumed temperature for the Earth
We have rather casually switched the measure of noise power from the Watts to Kelvins, but these two 
quantities only differ by a constant.  Whenever ratios are taken, the constant cancels out, allowing this 
change in units.  If we solve for tR :
    tR = (tE - tQ ⋅ yEQ)/(yEQ - 1)                                                                      (4)

This is an estimate of the receiver noise, expressed as a noise temperature, not including external noise 
sources.  This equation is plotted in the six graphs of figure 5.  Separate pairs of graphs cover three 
different Earth temperatures, 220, 255 and 290K.  Other values can be interpolated or calculated directly 
from the equation for tR.

If we want the system noise temperature, t, we would add on the quiet sky noise temperature
    t = tR + tQ                                                                                               (5)

If the temperature standard is not the Earth, but rather a matched load of known physical temperature, the 
procedure still works as described, but the load temperature is substituted for the Earth temperature.

Antenna Gain -  Now that we have an estimate of the system noise temperature and g/t, the antenna 
gain is merely
    g = t ⋅ g/t                                                                                                 (6)
This is a ratio relative to the gain of an isotropic radiator, and the more conventional dB value, G, is
    G = 10⋅log10(g)
  
This is a direct component of the station performance when transmitting.

Error Estimates - To this point we have been reviewing the general concept of Sun/Earth noise 
measurements.  A question remains of the practicality of doing such measurements, given that the data is 
not perfect.  Appendix  I includes the equations for errors in the estimation of g/t, tR and g.  These are very 
suitable for calculations in a small program, and such a program is in the appendix.  Alternatively, the 
graphs in Figures 4 and 5 are able to give some insight into these errors, offering a feel for the sources of 
errors, rather than just presenting numbers.

For example, the measurements of the y values are never perfect.  These involve the ratio of two different 
noise measurements.  For example, we might examine the effect of an error in YSQ on the estimation of g/t. 



The two graphs in figure 4 shows that for YSQ greater than about 4 dB, errors track dB for dB.  Smaller 
values of YSQ produce larger errors; at YSQ = 1dB, the spacing between the graphs for YSQ=1 and YSQ=2 is 
about 3-1/2 times what it is for larger values of YSQ.  This tells us that an error of 0.1 dB in YSQ will 
produce an error of about 3.5 x 0.1 or .35 dB.  We will see that this same conclusion comes from error 
calculations.

Similar insights can come from examining the receiver noise temperature graphs of figure 5.

Returning to the actual error calculations, Appendix I derives equations for what are referred to as 
"normalized sensitivities."  The notion is that a parameter, such as g/t, can be expressed in terms of the 
basic measurements, such as solar flux and the ySQ power ratio.  We can then consider a small fractional 
error in each of the measurement and translate this into a fractional error in g/t. Fractional errors are used 
for exactly the same reason that we use dB notation.  Our interest is often in not in the actual error value, 
but rather what fraction it is of the parameter.  For instance, if g/t is 5 and we have an error of 1, this error 
is quite large.  But, if g/t was 20, an error of 1 has only 1/4th the interest.  So the normalized sensitivities 
are used here exclusively, and have the form
    Error in a Parameter                                                  Error in the Measurement
    -------------------------  = Normalized Sensitivity  x  ---------------------------------
       Parameter Value                                                      Measurement Value

This formulation makes a normalized sensitivity of 1.0 as "average sensitivity," and smaller values as 
insensitive.  Values larger than 1.0 are the ones more likely to be the major sources of error.  An 
additional advantage is that the same normalized sensitivity will relate small dB values in the same way 
that it does for small errors.  For this reason, when considering the normalized sensitivities, small errors 
and dB values get treated casually, but of course, these two should never be mixed.  For instance, if we go 
to figure 6A, the normalized sensitivity of g/t to ySQ, we see a value of about 1.65 for  ySQ = 4 dB.  This 
means that an error of 0.1 dB in ySQ would produce an error in g/t of about 0.165 dB.  However, it also 
means that if we have a fractional error of 0.02 (2%) in  ySQ, the fractional error in g/t would be about 1.65 
times this amount or 0.033 (3.3%).

Figure 6A through 6D are graphs of the normalized sensitivities for estimating g/t and tR. These are for 
selected values of parameters, as indicated on the plots.  To present graphs for all the possible range of 
measurement values would require an excessive amount of paper.  The graphs shown will evaluate errors 
for many common systems.  If this is not adequate, the equations are given in the appendix for all the 
sensitivities, and the Basic program calculates these as well.

As a result of the error analysis, we will end up with multiple errors due to different measurements.  How 
do we combine these components to produce a single error estimate?  These are statistical errors for 
which we do not know an actual value nor even the sign of the error.  If we knew the actual error value, 
we would remove it!  We often use a phrase such as, "we have an error, or uncertainty, of 0.1 dB."  What 
we usually mean is that the error is most likely zero (the statistical mean value) and varies about that in 
some way described by, perhaps, a standard deviation (sigma) of 0.1 dB.  Or maybe the 0.1 dB is three 
sigmas, or some other measure.  So what happens when we try to add two or more errors together when 
they are statistical?  If the number of errors added together is small, the answer is not obvious.  In the 
appendix, it is shown that addition of the individual errors is appropriate, if we only knew their values.  It 
is not correct to add the sigma's of the error values, and to do so results in a conservative, or "worst case" 
error estimate (one alternate is to root-sum-square, or RSS the sigma's).  On the other hand, if the number 
of variables being added is only two or three, and we have only one or two measurements, it may be 
appropriate to be safe and add the error values.

What utility do these error measurements have?  When comparing two systems, or a single system at two 
different times, it keeps us from confusing real differences from those due to measurement errors.  
System A measures a g/t of 12 dB/K and system B measures 13 dB/K.  One might conclude that B was 



better, given no other data.  But, if both measurements resulted in an error of 1 dB, we could say that 
system A was 11 to 13 and B was 12 to 14 dB/K.  Now we know that system A might really be the better 
of the two.  This might be good to know if we were about to take system A apart to find out what was 
wrong!  This example also illustrates the utility of identifying a need to improve the measurement 
accuracy.  For this case, the accuracy of 1 dB doesn't seem adequate! 

An Example - Assume that a 1-meter diameter parabolic antenna is being measured in late morning 
on 27 June 2003, so that the solar flux data of figure 1 is accurate.  In general, we would have gone to the 
Internet and obtained the data to plot a curve appropriate to that time.  At our operating frequency of 
10368 MHz, the flux level is taken from the curve as 315 SFU.  Using the 10.4 GHz graph of figure 2 (or 
equation 1), the value of i is found to be 0.0760 K.

The measurements found the difference in noise between the Sun and the quiet sky around the North star 
to be YSQ =  5.94 dB.  This was done by pointing the antenna at the quiet sky around the North Star, 
measuring the noise power coming from the receiver in relative dB, and then moving the antenna to the 
Sun and making a second noise power measurement.  YSQ  is the difference in the two noise power dB 
levels.  The Earth noise was measured similarly as YEQ = 4.07 dB above the same quiet sky.  Several 
measurements were made and an accuracy of 0.1 dB was determined for these Y ratios.

From the first of these measurements, along with our value for i, we can estimate g/t by using graphs of 
figures 4 to be: 
          g/t = 15.9 dB/K

The graph does not include a line for exactly YSQ  = 5.94, so we must interpolate by moving very slightly 
away from the 6.0 line, towards the 5.0 line.  Alternatively, this could have been found with a calculator 
using equation 2, or the equivalent calculation in the Basic1 program of Appendix I.

The g/t number is very useful for describing our receiving performance.  Next we can examine the 
sensitivity of g/t to errors in YSQ  and i.  For this we can use the graph of Figure 6A (or equations A1-6 and 
A1-7), noting that the sensitivity to i is always -1:
          Normalized Sensitivity to ySQ = 1.34
          Normalized Sensitivity to i = -1.00

Subscripts have been left as full size characters, as was necessary in the Basic program, but ySQ is really 
ySQ .  The performance numbers give a good measure of the antenna and receiver performance.  It is 
interesting to look at the sensitivities, to see how accurate these numbers might be.  For g/t , the 
sensitivity to ySQ is 1.34. This means that our 0.1 dB accuracy in Y factors will be about 0.134 dB in g/t.  
This is not anything like a .001 dB precision activity, so we can round things off and say the accuracy in 
g/t is still about 0.13 or even 0.1 dB.  The solar flux numbers are not perfect, either.  Part of this is from 
the basic measurement accuracy and part from the interpolation of the flux vs. frequency curve.  An error 
of 5% in flux produces an error of 5% in i and from the sensitivity, we can see this produces an error in 
g/t of -5%.  The minus sign is not important since we don't know the direction for the flux error that 
started this.  Since we have g/t in dB, we should convert the possible error to dB as well, by 
10⋅log10[(1.0+.05) / 1] = 0.2 dB.  As a worst case estimate we might add the two errors and conclude that 
the g/t is 15.9 ± 0.3 dB.

The g/t estimate has not required any information about the quiet-sky noise temperature and neither has it 
used the Earth noise measurement.  Let's proceed to estimate the receiver noise temperature by including 
these quantities.  We can first estimate the quiet sky noise.  A tQ = 30 K quiet sky is based on:
          Background radiation                  3 K
          Galactic radiation                    0 K
          Noise from antenna spillover         16 K
          Noise from feed structure scattering  7 K
          Atmospheric absorption noise          4 K

1 Many of the calculations in the example are produced from the Basic program.



              Total Quiet Sky                  30 K

The Earth noise is measured by pointing the antenna into a wooded area at a physical temperature of 68F 
or in Celsius or absolute scales 20 C and 293 K.  We know that the match of this "Earth" target is not 
perfect and some of the observed noise is reflected from much colder space.  Ideally, we would measure 
this temperature by comparing against a reference load, but lacking this data we will estimate tE = 250 K.  
We can now estimate the receiver noise temperature using Figure 5E (or equation 4):
          tR = 112 K

Sensitivities come from figures 6B, 6C and 6D:
          Normalized Sensitivity to tE = 1.44
          Normalized Sensitivity to tQ = -0.44
          Normalized Sensitivity to yEQ = -2.61

The sensitivity to ySQ  is 2.6 and enough larger than one to warrant special consideration.  Our 0.1dB 
accuracy in Y factors produces about 0.26 dB in tR.  To see what this means, we will translate into an 
error, in tR,, into temperature units by changing 0.26 dB into a power ratio of 1.062, suggesting a range of 
tR of 112 / 1.062 to 112 x 1.062, or 105 to 119 K.  Perhaps of greater concern is the sensitivity to tE, since 
we were not very confident in our original estimate of the Earth temperature.  If we have an error of 30 K 
in our 250 K for tE, this is a fractional error of 30 / 250 = 0.12.  The fractional error in tR will be 1.44 x 
0.12 = 0.17 and in Kelvins, the error in tR would be 0.17 x 112 = 19 K.

Our uncertainty in tQ might center on the spillover contribution, which might be ±5 K.  Since tQ is small, 
this raises the level of this contributor, where the fractional error is 5 / 30 = 0.17.  This contributes an 
error to tR of 0.17 x 112 = 19 K.

We now have three independent errors of 7, 19 and 19 K. The worst case situation of adding the errors 
gives 45 K.  If we had probability distributions for the errors, we might be formal about producing an 
actual distribution of the errors.  This is probably not justified in terms of our actual knowledge of the 
measurement errors.  What is worthwhile is to RSS the errors and use this as our "less conservative" error 
value.  This would have an error of SQRT(72 + 192 + 192) = 28 K. On this basis, our uncertainty now 
covers roughly 112-28 to 112+28 or 84 to 140 K.  This relatively large uncertainty does not mean the 
method is not useful, but rather suggests a need to reduce the uncertainty in tE.  In fact, expressed as noise 
figures, the uncertainty is 1.4 ± 0.3 dB and not a great deal larger than the accuracy of noise figure 
meters!

Finally, we directly calculate the system noise temperature and the antenna gain 
          t = tR + tQ = 142 K   (system noise temperature)

          g = t x g/t = 5524, or 37.4 dB  (antenna power gain)
          Normalized Sensitivity to ySQ = 1.34
          Normalized Sensitivity to yEQ = -1.64
          Normalized Sensitivity to i = -1.00
          Normalized Sensitivity to tQ = -0.136
          Normalized Sensitivity to tE = 1.14

The sensitivities for the system noise temperature are the same as for the receiver noise temperature and 
not repeated.  The normalized sensitivities for the antenna gain, g, have five components (treating all as 
being positive):
    ySQ:  0.1 dB   or fraction=.023   Fraction of ySQ=1.34x.023 = .031
    yEQ:  0.1 dB   or fraction=.023   Fraction of ySQ=1.64x.023 = .038
      i:  5%       or fraction=.05    Fraction of ySQ=1.00x.05  = .05
     tQ:  5K/30K   or fraction=.167   Fraction of ySQ=.136x.167 = .023
     tE:  30K/250K or fraction=.125   Fraction of ySQ=1.14x.12  = .14



It is apparent that the error in the determination of antenna gain for this example is dominated by our 
uncertainty in the Earth temperature.  The error due to this factor alone is about 10⋅log10(1.14) = 0.57 dB.  
If we worst-case add all the error fractions, we have a fraction sum of 0.282 or 1.1 dB.  If we RSS the 
errors we have 0.157 as a fraction or 0.64 dB.  This is telling us that exact number we cannot be precise 
about, but we should allow for an error in gain around "one dB."  Equally important, if we want to 
improve this accuracy we should first improve our knowledge of the Earth temperature.

Again, this is only an example.  The numerical values may be valid for the system studied, but they will 
to be different for each individual case.

Conclusions - The graphs of figures 4 and 5 apply the three-noise measurement scheme for 
determining system performance parameters, g/t, t and g.  These are suitable for determining the 
performance, but perhaps a better method is the simple Basic program of Appendix I.  The program 
quickly shows the specific answers for the measurements taken.  The graphs are best for gaining insight 
about the method.  One can see the way in which the performance parameters vary as the measurements 
vary.

The program calculates the sensitivities for g/t, tR (or t) and g to errors in the various input variables.  A 
normalized sensitivity of 1 indicates that a small percentage error (or small dB error) in an input variable 
will result in the same percentage error (or dB error) in the performance parameter.  Other values of the 
normalized sensitivity scale the parameters accordingly.  After estimating the performance parameters, 
the sensitivities should be used to find the general order of magnitude of the errors.  It is not generally 
necessary to make a statistical combination of the sensitivities.

In order to compare system performance between different times, as well as to compare different systems, 
it is necessary to have obtained a value for the solar flux and the temperatures of the quiet sky and Earth.  
This requires a bit of extra effort, but allows a much more useful estimate than Sun-noise ratios.  The step 
of computing g/t, tR (or t) and g provides the most useful form of the answers.  Finally, if the magnitude of 
the errors are estimated, it is possible to place statistical bounds on the performance parameters.

Finally, here are some general rules for consideration:
• Whenever taking Sun noise measurements, also take Earth noise measurements.
• Obtain current solar flux numbers and interpolate for the frequency used.
• Convert Sun noise into g/t values and use this as a primary measure of receiving performance.
• Calculate the receiver  and system noise temperatures.
• Calculate the antenna gain, as it is the single parameter that relates to transmitter performance.
• Try to estimate the errors in the measurements and parameters.
• Keep the measurements in a notebook where they can be found when questions arise!
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Appendix I  - Equation Derivation, Error Analysis and Basic Program

The basic equations for Sun noise are presented in reference [6] and elsewhere.  The assumption is that 
the Sun is smaller in angular extent than the antenna beam doing the measuring.  This is valid except for 
very large antennas, or very high frequencies, as the Sun's diameter is about 1/2 degree.  The solar flux 
arrives at the Earth's surface with a uniform illumination of s solar flux units (SFU) with an SFU=1⋅10-22 
Watt-seconds / square-meter.  If we characterize the antenna as an energy collector with an effective area 
of  ae, the intercepted energy for any single antenna polarization will be (s/2)⋅ ae Watt-seconds.  To 
convert this to an effective temperature, which is the black-body temperature that would produce the 
same noise energy, we divide by Boltzman's constant, k=1.3806⋅10-23 Watt-second/Kelvin.  If we call the 
equivalent Sun temperature tSN, we have
       tSN, = (s/2)⋅ ae / k                                                                 (A1-1)
The gain of an antenna, g, is a more conventional description of performance, and its effective area, Ae, is 
given by
        g = 4π ae / λ2                                                                      (A1-2)
Eliminating ae, we have
        tSN, = g s λ2 / 8π  k
For convenience, s is converted into an "intensity" i, in Kelvins
        i = s λ2 / 8π  k
so that 
        tSN  = g⋅ i                                                                            (A1-3)

The measurement of Sun noise consists of determining the ratio of the noise powers for the antenna 
pointed at the Sun and at the quiet sky.  We will describe all these powers in terms of equivalent 
temperatures, the usual convention, keeping in mind that these relate to actual received powers by a 
constant.  For the Sun case we receive the Sun, plus the quiet sky, plus the receiver noise.  For the quiet 
sky, we receive the latter two quantities only.  Thus
        ySQ = (tSN + tQ + tR) / (tQ + tR)                                             (A1-4)
which can be expressed in terms of the system noise temperature t = tQ + tR as
        ySQ = (tSN + t) / t 
Substituting for tSN from A1-3, and solving for g/t we have the fundamental Sun noise equation used in 
figure 4 of the text
        g / t = (ySQ - 1) / i                                                                (A1-5)

The y measurements and values of i will have errors.  These can be evaluated by a standard technique of 
partial derivatives.  For small errors, we evaluate the error in g/t, called ∆(g/t) as the sum of two terms 
that relate to each of the quantities that may have errors, ySQ and i.  The formulation is

To those not familiar with this, it may have elements of gibberish!  However, it is a precise statement that 
roughly translates in words to, "an error in g/t is the sum of errors in both variables, ySQ and i, multiplied 
by their sensitivities. The partial derivative means that when we evaluate the sensitivity of g/t to ySQ we 
can treat i as though it was a constant, and when evaluating the sensitivity of g/t to i we can treat ySQ as 
though it was a constant.  A subtlety of the equation is that since it is a sum of terms, we can consider the 
errors associated with ySQ and i separately, a major convenience.  The actual evaluation of the partial 
derivatives is by differential calculus, which for this case results in an equation:
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 In evaluating this equation, remember that all variables are in their basic units and not dB. 

In all that follows, we will normalize the sensitivities by dividing by the quantity with an error.  This has 
the effect of always talking about "percentage" errors, and since we are assuming small errors, it is a good 
approximation to say that these normalized sensitivities are also the multiplier for dB of error.  The 
independence of the (small) error contributions is used here by assuming, for example, that ∆i is zero 
when evaluating the sensitivity to ySQ.  For g/t, the two error equations are (A1-6 and 7):

In the first of these equations, it appears that one might cancel the terms ySQ, but this 
would remove the normalization that allows us to see the ratios of percentages and dB's.   

Moving to the estimation of receiver noise temperature, tR, by use of the Earth and Quiet Sky, we won't 
show the detail that was presented for g/t, but the method is identical.  The resulting equations in 
normalized form are (A1-8, 9 and 10):

Finally, for the case of determining antenna gain, the calculation of g depends on ySQ, i, yEQ, tQ and tE, but 
the sensitivities are the same as those of g/t for the first two variables and will not be repeated here.  For 
the other three variables (A1-11, 12):
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where g has been written in fundamental terms (A1-14):

The equations for g/t, t, and g, along with all sensitivities can be evaluated from the following Basic 
program. If Earth noise measurements are not available, the program can still be used, but the only valid 
output is g/t.

REM SQE1.bas  Sun, Quiet Sky and Earth noise calculations.
REM  (c) Bob Larkin, W7PUA, 2003

PRINT "SQE1.BAS Program - de W7PUA, Rev 1.0, 28 June 03"
PRINT "Sun, Quiet Sky & Earth Noise Calculations"
INPUT "Quiet sky temperature, tQ, Kelvins"; tQ
INPUT "Earth temperature, tE, Kelvins "; tE
INPUT "Sun intensity, i, Kelvins "; i
INPUT "Sun/Quiet power ratio, dB "; YSQ
INPUT "Earth/Quiet power ratio, dB "; YEQ

yS = 10 ^ (.1 * YSQ)
yE = 10 ^ (.1 * YEQ)
gt = (yS - 1) / i
PRINT USING "g/t =###.#"; 4.342945 * LOG(gt);
PRINT USING " 'dB/K', or as a ratio g/t =######.#"; gt
sensgtysq = yS / (yS - 1)
REM Sensitivity of g to i simplifies to -1, a constant
PRINT USING "g/t Error Sensitivities: ##.## to ySQ"; sensgtysq;
PRINT " and -1.00 to i"
tR = (tE - tQ * yE) / (yE - 1)
PRINT USING "Receiver noise temperature, tR =####.# Kelvins"; tR
PRINT USING "tR Error Sensitivities: ##.## to tE,"; tE / (tE - tQ * yE);
PRINT USING "  ###.## to tQ,"; -tQ * yE / (tE - tQ * yE);
PRINT USING "  ###.## to yEQ"; yE * (tQ - tE) / ((tE - tQ * yE) * (yE - 1))
PRINT USING "System noise temperature =####.# Kelvins"; tR + tQ
g = gt * (tR + tQ)
PRINT USING "Antenna gain, G = ##.# dB"; 4.342945 * LOG(g)
REM Sensitivities for antenna gain
REM Sensitivity of g to both i and ySQ is the same as for g/t
dgdtq = (1 - yS) / ((yE - 1) * i)
senstq = dgdtq * tQ / g
dgdte = (yS - 1) / ((yE - 1) * i)
senste = dgdte * tE / g
dgdyeq = (yS - 1) * (tQ - tE) / (i * (yE - 1) * (yE - 1))
sensyeq = dgdyeq * yE / g
PRINT "g Error Sensitivities"
A$ = "   ##.## to ySQ,  ##.## to yEQ,  -1.00 to i,  ##.### to tQ, ##.## to tE"
PRINT USING A$; sensgtysq; sensyeq; senstq; senste
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